Neural network analyses of infrared spectra for classifying cell wall architectures.

نویسندگان

  • Maureen C McCann
  • Marianne Defernez
  • Breeanna R Urbanowicz
  • Jagdish C Tewari
  • Tiffany Langewisch
  • Anna Olek
  • Brian Wells
  • Reginald H Wilson
  • Nicholas C Carpita
چکیده

About 10% of plant genomes are devoted to cell wall biogenesis. Our goal is to establish methodologies that identify and classify cell wall phenotypes of mutants on a genome-wide scale. Toward this goal, we have used a model system, the elongating maize (Zea mays) coleoptile system, in which cell wall changes are well characterized, to develop a paradigm for classification of a comprehensive range of cell wall architectures altered during development, by environmental perturbation, or by mutation. Dynamic changes in cell walls of etiolated maize coleoptiles, sampled at one-half-d intervals of growth, were analyzed by chemical and enzymatic assays and Fourier transform infrared spectroscopy. The primary walls of grasses are composed of cellulose microfibrils, glucuronoarabinoxylans, and mixed-linkage (1 --> 3),(1 --> 4)-beta-D-glucans, together with smaller amounts of glucomannans, xyloglucans, pectins, and a network of polyphenolic substances. During coleoptile development, changes in cell wall composition included a transient appearance of the (1 --> 3),(1 --> 4)-beta-D-glucans, a gradual loss of arabinose from glucuronoarabinoxylans, and an increase in the relative proportion of cellulose. Infrared spectra reflected these dynamic changes in composition. Although infrared spectra of walls from embryonic, elongating, and senescent coleoptiles were broadly discriminated from each other by exploratory principal components analysis, neural network algorithms (both genetic and Kohonen) could correctly classify infrared spectra from cell walls harvested from individuals differing at one-half-d interval of growth. We tested the predictive capabilities of the model with a maize inbred line, Wisconsin 22, and found it to be accurate in classifying cell walls representing developmental stage. The ability of artificial neural networks to classify infrared spectra from cell walls provides a means to identify many possible classes of cell wall phenotypes. This classification can be broadened to phenotypes resulting from mutations in genes encoding proteins for which a function is yet to be described.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling

Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...

متن کامل

Discrimination of Human Cell Lines by Infrared Spectroscopy and Mathematical Modeling

Variations in biochemical features are extensive among cells. Identification of marker that is specific for each cell is essential for following the differentiation of stem cell and metastatic growing. Fourier transform infrared spectroscopy (FTIR) as a biochemical analysis more focused on diagnosis of cancerous cells. In this study, commercially obtained cell lines such as Human ovarian carcin...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

Patterns Prediction of Chemotherapy Sensitivity in Cancer Cell lines Using FTIR Spectrum, Neural Network and Principal Components Analysis

    Drug resistance enables cancer cells to break away from cytotoxic effect of anticancer drugs. Identification of resistant phenotype is very important because it can lead to effective treatment plan. There is an interest in developing classifying models of resistance phenotype based on the multivariate data. We have investigated a vibrational spectroscopic approach in order to characterize a...

متن کامل

Predicting Force in Single Point Incremental Forming by Using Artificial Neural Network

In this study, an artificial neural network was used to predict the minimum force required to single point incremental forming (SPIF) of thin sheets of Aluminium AA3003-O and calamine brass Cu67Zn33 alloy. Accordingly, the parameters for processing, i.e., step depth, the feed rate of the tool, spindle speed, wall angle, thickness of metal sheets and type of material were selected as input and t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 143 3  شماره 

صفحات  -

تاریخ انتشار 2007